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Epistasis and Its Implications for Personal Genetics

Jason H. Moore1,2,3,4,5,* and Scott M. Williams6
The widespread availability of high-throughput genotyping

technology has opened the door to the era of personal genetics,

which brings to consumers the promise of using genetic variations

to predict individual susceptibility to common diseases. Despite

easy access to commercial personal genetics services, our knowl-

edge of the genetic architecture of common diseases is still very

limited and has not yet fulfilled the promise of accurately predict-

ing most people at risk. This is partly because of the complexity

of the mapping relationship between genotype and phenotype

that is a consequence of epistasis (gene-gene interaction) and

other phenomena such as gene-environment interaction and

locus heterogeneity. Unfortunately, these aspects of genetic archi-

tecture have not been addressed in most of the genetic association

studies that provide the knowledge base for interpreting large-

scale genetic association results. We provide here an introductory

review of how epistasis can affect human health and disease and

how it can be detected in population-based studies. We provide

some thoughts on the implications of epistasis for personal

genetics and some recommendations for improving personal

genetics in light of this complexity.

Introduction

The discovery and characterization of BRCA1 (MIM

113705) and BRCA2 (MIM 600185) and their specific

mutations as significant risk factors for familial breast

cancer (MIM 114480) ushered in the era of commercial

genetic testing.1 There is no question that our ability to

test for the presence of mutations in these two genes plays

some role in understanding and preventing this form of

cancer. However, much of familial breast cancer remains

unexplained by BRCA1 and BRCA2, and the elusive

BRCA3 has yet to be identified.2 It is entirely possible

that the remaining genetic risk factors for familial breast

cancer are a combination of rare variants with interme-

diate penetrance and common variants, such as SNPs, that

have low penetrance. However, the common disease-

common variant (CDCV) model has thus far failed to

uncover new variants that explain a large fraction of the

genetic risk. The data, as reviewed by Ripperger et al., indi-

cate that there is currently no evidence that genetic testing

for variants of low penetrance is useful for predicting risk.2

Therefore, before meaningful new genetic testing services

can be offered, we must substantially improve our under-

standing of the genetic architecture of familial breast

cancer, where genetic architecture is defined as (1) the set
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of genes and DNA sequence involved in the disease, (2)

their variation in the population, and (3) their specific

effects on the phenotype.3 We argue here, based on the

emerging data and analyses, that elucidating the genetic

architecture of breast cancer and comparable diseases

must focus on underlying complexity.

The current strategy for revealing genetic architecture is

to carry out a genome-wide association study (GWAS) with

a million or more SNPs or other variants that capture much

of the common variation in the human genome by tagging

blocks of variants that are in linkage disequilibrium.4,5 This

approach is based on the hypothesis that scanning the

entire genome for single SNP associations in an unbiased

or agnostic manner that ignores what we know about

disease pathobiology will reveal much of the unexplained

genetic architecture of a particular disease. The prevalent

analytical strategy of searching for strong single SNP effects

without regard to the rest of the genome or exposure was

initially developed for diseases with few known etiologic

factors. This approach has been applied universally to all

GWAS analyses, producing deceptive results because of

confounding, as occurs with smoking and lung cancer.6

Despite the promise of this technology and the time and

financial resources already expended, the results have

been generally underwhelming in terms of elucidating

the genetic architecture of common complex disease and

explaining a majority of the genetic risks. Consider, for

example, the application of GWAS for identifying cancer-

susceptibility genes. A recent review of these studies shows

that a number of new susceptibility loci have been identi-

fied for several types of cancer, including breast, prostate,

colorectal, lung, and skin.7 The identification of new asso-

ciations is certainly important. However, as Easton and

Eeles note, the increase in risk for the susceptibility alleles

at each of these loci is generally 1.3-fold or less.7 For

familial breast cancer, Easton et al. reported five significant

replicated associations that were identified by GWAS in

a three-stage study design.8 Four of these variants were in

known genes, and one was located in a hypothetical

gene. Assuming a multiplicative model, these five loci

combine to explain only 3.6% of the excess familial risk

of breast cancer and, as suggested by Ripperger et al.,2

were not deemed to be suitable for genetic testing as a result

of their small effect sizes.8 In a recent follow-up study with
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two additional stages of testing and replication, two addi-

tional susceptibility loci were identified with odds ratios

of 1.11 and 0.95, respectively, each accounting for much

less than 1% of the familial risk of breast cancer.9 When

combined with the previous known genetic risk factors

for familial breast cancer, the estimated fraction of risk

explained is approximately 5.9%. This is in stark contrast

to BRCA1 and BRCA2 mutations, which account for

between 20% and 40% of familial breast cancer. Although

the application of GWAS to familial breast cancer has

generated new knowledge, it has not resulted in new

genetic tests that can be used to predict and prevent

familial breast cancer. These results are discouraging for

more common diseases such as sporadic breast cancer

and type 2 diabetes that are likely to have a much more

complex genetic architecture. As Clark et al. predicted,

our success with GWAS depends critically on the assump-

tions we make about disease complexity.10

The limits of GWAS, as revealed through the study of

familial breast cancer, do not represent isolated examples.

In fact, very few SNPs with odds ratios above 1.5 have

been discovered and replicated for any common human

disease, suggesting that their use in genetic testing will be

limited. This limitation was pointed out in a recent study

by Jakobsdottir et al. showing that SNPs identified by

GWAS for a variety of diseases make poor classifiers of

disease, thus calling into question their usefulness for risk

assessment by genetic testing.11 The same conclusions

have been presented by Kraft et al.12 Despite these cautions,

commercial genotyping is currently being offered directly

to the consumer at affordable prices, and, although there

are appropriate disclaimers, it is obvious that the avail-

ability of cheap genetic testing is fostering the perception

that the era of personal genetics is upon us. However, it is

important to note that the ability to inexpensively measure

one million or more SNPs in an individual’s genome does

not, in the absence of accurate genotype-phenotype

maps, provide clinically relevant information in most

situations. Nonetheless, several commercial direct-to-con-

sumer genetic testing services are now available for less

than $1000, and in some cases less than $500.13

Barring future regulation, it appears as though personal

genetics is here to stay. Given this reality, it is important

to assess the impact that genetic architecture will have

on the utility of the results being provided to the

consumer. It is our working hypothesis that epistasis, or

gene-gene interaction, plays an important role in the

genetic architecture of common diseases and thus must

be characterized if personal genetics is to have an impact

on the health of the consumer. We provide here an intro-

duction to epistasis and a theory for why it is ubiquitous

in human biology. We then provide an overview of the

analytical tools that are necessary to detect and charac-

terize epistasis in genetic association studies. Finally, we

provide a discussion of the implications of epistasis for

personal genetics and then provide some recommenda-

tions for how to move forward under the assumption
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that the genetic architecture of common disease is ex-

tremely complex.

What Is Epistasis?

William Bateson, who first coined the term ‘‘genetics’’ (see

historical account by Patrick Bateson14), also coined the

word ‘‘epistasis’’ in the early 1900s to explain deviations

from Mendelian inheritance.15 The term ‘‘epistasis’’ liter-

ally means ‘‘standing upon,’’ and Bateson used it to

describe characters that were layered on top of other char-

acters, thereby masking their expression. The epistatic

characters had to be removed before the underlying hypo-

static characters could be revealed. The commonly used

definition of epistasis, an allele at one locus masking

the expression of an allele at another locus, reflects this

original definition. As reviewed recently by Tyler et al.,

eye color determination in Drosophila provides a classic

example.16 The genes scarlet, brown, and white play major

roles in a simplified model of Drosophila eye pigmentation.

Eye pigmentation in Drosophila requires the synthesis and

deposition of both drosopterins, red pigments synthesized

from GTP, and ommochromes, brown pigments synthe-

sized from tryptophan. A mutation in brown prevents

production of the bright red pigment, resulting in a fly

with brown eyes, and a mutation in scarlet prevents

production of the brown pigment, resulting in a fly with

bright red eyes. In a fly with a mutation in the white

gene, neither pigment can be produced, and the fly will

have white eyes regardless of the genotype at the brown

or scarlet loci. In this example, the white gene is epistatic

to brown and scarlet: a mutant genotype at the white locus

masks the genotypes at the other loci.

Since Bateson, there have been many different and evolv-

ing definitions of epistasis or gene-gene interaction.16–29

For example, Fisher defined epistasis in a statistical manner

as an explanation for deviation from additivity in a linear

model.30 This nonadditivity of genetic effects measured

mathematically is different from Bateson’s more biological

definition of epistasis. We have previously made the distinc-

tion between Bateson’s biological epistasis and Fisher’s

statistical epistasis.29 This distinction is important to keep

in mind when thinking about the genetic architecture of

common human diseases because biological epistasis

happens at the cellular level in an individual whereas statis-

tical epistasis is a pattern of genotype-to-phenotype rela-

tionships that results from genetic variation in a human

population. This distinction becomes important when

attempting to draw a biological conclusion from a statistical

model that describes a genetic association. Moore and

Williams29 and Phillips22 have discussed the idea that

more modern definitions of epistasis may be needed in light

of our new knowledge about gene networks and biological

systems. However, the classic definitions provided by

Bateson and Fisher still provide a good starting point for

thinking about gene-gene interactions.15,30

To illustrate the concept of statistical interaction,

consider the following simple example of epistasis in the
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Figure 1. A Simple Biochemical Systems
Model that Is Consistent with a Complex
Genetic Model
(A) Penetrance function showing an
exclusive OR (XOR) pattern of high-risk
(shaded) and low-risk (unshaded) geno-
type combinations for two biallelic SNPs.
(B) A Petri net model of a biochemical
system under the control of the two SNPs
from the genetic model in (A). SNPA

controls the diameter of the ‘‘arc’’ or
‘‘pipe’’ carrying molecules of type 1, which
are converted to molecules of type 2 at
a constant rate governed by the first
‘‘transition’’ (lightning) on the left (wider
pipes ¼ larger diameter). SNPA is pleio-
tropic and also controls the rate at which

molecules of type 2 are converted to molecules of type 3 (wider lightning bolts¼ faster rate). SNPB controls the arc or pipe carrying mole-
cules of type 2 to the second transition, which converts them to molecules of type 3. When executed as part of a threshold model, the
output of this system matches the distribution of high-risk and low-risk genotypes. This Petri net model demonstrates that a simple
biochemical systems model can underlie a nonlinear genetic model.
form of a penetrance function. Penetrance is simply the

probability (P) of disease (D) given a particular combina-

tion of genotypes (G) that was inherited (i.e., P[DjG]). Let

us assume for two SNPs labeled A and B that genotypes

AA, aa, BB, and bb have population frequencies of 0.25

whereas genotypes Aa and Bb have frequencies of 0.5.

Let us also assume that individuals have a very high risk

of disease if they inherit Aa or Bb but not both (i.e., the

exclusive OR [XOR] logic function). What makes this

model interesting is that disease risk is entirely dependent

on the particular combination of genotypes inherited at

more than one locus. The penetrances for each individual

genotype in this model are all the same and are computed

by summing the products of the genotype frequencies

and penetrance values. Heritability can be calculated as

outlined by Culverhouse et al.31 Thus, in this model, there

is no difference in disease risk for each single-locus geno-

type as specified by penetrance values. This model is

labeled M170 by Li and Reich in their categorization of

genetic models involving two SNPs and is an example of

a pattern that is not separable by a simple linear func-

tion.32 This model is a special case in which all of the

heritability results from epistasis or nonlinear gene-gene

interaction.

Although highly illustrative, the XOR model and others

like it are often criticized for lack of biological plausibility.

For example, the XOR model does not fit with Mendelian

concepts of epistasis that are based on interactions

between SNPs with recessive and dominant effects. There

are two important points to keep in mind when embracing

a complex view of genetic architecture: first, we do not yet

know what a plausible epistasis model is, because we have

yet to systematically evaluate nonlinear genetic models of

human disease, and second, we have not yet begun to vali-

date these models in experimental systems. Therefore, our

knowledge of the diversity of genetic models underlying

common diseases is in its infancy. However, we can begin

to think about biological plausibility via computational

thought experiments.33 To this end, Moore and Hahn
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developed a computational system for discovering systems

biology models that are consistent with epistasis models

such as XOR.34 Here, Petri nets were used as a discrete

dynamic system modeling tool (see Moore and Hahn for

details34). Figure 1A shows a variation on an XOR-based

penetrance function in which aa or bb genotypes are

high risk, but not in the presence of the nonhomologous

homozygote. Figure 1B shows an example Petri net model

that is consistent with the pattern of high-risk and low-

risk cells in the XOR-based penetrance function. The

importance of this result is that it shows how a simple

discrete biochemical systems model can account for the

nonlinear pattern observed in the XOR model. Although

not an actual biological result, this thought experiment

shows that a simple system can generate a complex genetic

architecture that is not predicted by a one-SNP-at-a-time

analytical approach. As reviewed by Moore and Williams,

this represents a first step toward making the connection

between biological and statistical epistasis.29 Indeed,

others have demonstrated biologically plausible models

for transcriptional and biochemical networks that are

consistent with the nonlinear XOR function.35,36

It is important to note that the data supporting epistasis

in complex human diseases are emerging slowly. This is

not surprising given that decisions to use models that do

not incorporate complex interactions are based primarily

on hypotheses of convenience and not on plausible

biological phenomena that are inherently complex. There-

fore, it is important to carefully consider biological plausi-

bility in addition to analytical simplicity in designing anal-

yses. The roles for experimental genetics and systems

biology in constructing well-founded hypotheses of

disease etiology are discussed below with this in mind.

Why Is Epistasis so Ubiquitous?

Moore37 and Templeton,24 for example, have argued that

epistasis is likely to be a ubiquitous component of the

genetic architecture of common human diseases. There

are several reasons for this. First, as noted above, epistasis
Journal of Human Genetics 85, 309–320, September 11, 2009 311



is not a new idea and remains a common phenomenon in

the biological literature. Second, the ubiquity of biomolec-

ular interactions in gene regulation and biochemical and

metabolic systems suggests that the relationship between

DNA sequence variations and biological endpoints is

likely to involve interactions of multiple gene products.

Third, positive results from studies of single polymor-

phisms typically do not replicate across independent

samples. Fourth, and perhaps most importantly, epistasis

is commonly found when properly investigated. These

four reasons suggest that epistasis may be ubiquitous in

human biology but do not provide an explanation for

why. For that, we turn to evolutionary biology for a theory

that may provide a compelling mechanism for epistasis.

Canalization is an idea introduced by Waddington to

explain the buffering of phenotypes to genetic and envi-

ronmental perturbations.38 Evolutionary biologists have

described canalization as stabilizing selection that ensures

that systems evolve to a robust level.39 In other words,

evolution seeks to keep our blood pressure, glucose levels,

and other important physiological and metabolic systems

in a healthy range while ensuring that these measures are

resistant to most genetic and environmental perturba-

tions. Deviations from these healthy ranges are often cate-

gorized as diseases such as hypertension and diabetes. One

manner in which evolution has succeeded in developing

robust systems is by evolving redundant gene networks

that are resistant to fluctuations, both genetic and environ-

mental. This might explain why epistasis is so ubiquitous

within the context of human disease. What we observe

as disease might be the result of the accumulation of

multiple mutations in different parts of a gene network

that are needed to perturb a robust system from its evolved

range. This might explain why most single variants

explain very little of the risk for any given common

disease. If this is true, it is essential to look for combina-

tions of genetic variations in human populations as

a way to capture the patterns of variation across networks

that are needed to move individuals into unhealthy or

disease phenotypes such as hypertension. In essence,

evolution moves a population to a state where the vast

majority of people are healthy, and this is often accom-

plished through complex networks that involve substan-

tial epistasis. Epistasis as a robust gene network phenom-

enon has recently been discussed by Tyler et al.16

Assuming canalization has shaped human biology

throughout history, one might ask why we see indepen-

dent main effects in genetic association studies at all.

Gibson suggests that human migration and recent bottle-

necks might allow hidden or cryptic genetic variation to

emerge as genetic risk factors.39 Our recent evolutionary

history may explain why genetic architecture is likely

to be a mix of different types of genetic effects includ-

ing epistasis, gene-environment interactions, and locus

heterogeneity. Unfortunately, canalization is very difficult

to determine experimentally. Nevertheless, it provides an

important foundation to begin thinking about why the
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genetic architecture of common diseases is so complex.

Gibson offers a few strategies for identifying the hallmarks

of canalization.39

The Challenges of Detecting Statistical Epistasis

in Genetic Association Studies

As discussed above, one of the early definitions of epistasis

was deviation from additivity in a linear model.30 The

linear model plays an important role in modern genetic

epidemiology because it has a solid theoretical foundation,

is easy to implement with a wide range of different

software packages, and is easy to interpret. Despite these

good reasons to use linear models,27,28 they do have limi-

tations for explaining genetic models of disease because

they have limited ability to detect nonlinear patterns of

interaction.40 The first problem is that modeling interac-

tions requires looking at combinations of variables.

Considering multiple variables simultaneously is chal-

lenging because the available data get spread thinly across

multiple combinations of genotypes. Estimation of param-

eters in a linear model can be very problematic when the

data are sparse. The second problem is that linear models

are often implemented such that interaction effects are

only considered after significant independent main effects

are identified. This certainly makes model fitting easier, but

it assumes that the most important predictors will have

main effects. For example, the focused interaction testing

framework (FITF) approach of Millstein et al. provides

a powerful logistic regression approach to detecting inter-

actions but conditions on main effects.41 Furthermore, it

is well documented that linear models have greater power

to detect main effects than interactions.42–44 Therefore, in

using linear models, we are constrained not by biological

reality but by statistical tools that were not necessarily

developed to test realistic biological models. As a field,

genetic epidemiology has preferred Fisher’s definition of

epistasis to Bateson’s, and this has led to analytical

approaches that significantly hurt our ability to model

real genetic architecture. In fact, the historical sidetracking

of Bateson’s biological epistasis for Fisher’s statistical defi-

nition, which he called ‘‘epistacy,’’ has been noted.20 The

limitations of the linear model and other parametric statis-

tical approaches have motivated the development of

computational approaches such as those from machine

learning and data mining that make fewer assumptions

about the functional form of the model and the effects

being modeled.45–47 Several recent reviews highlight the

need for new methods48 and discuss and compare different

strategies for detecting statistical epistasis.28,49 The

methods reviewed by Cordell28 include novel approaches

such as combinatorial partitioning50,51 and logic regres-

sion52,53 and machine learning approaches such as

random forests,54,55 for example. We briefly review one

of these novel methods, multifactor dimensionality reduc-

tion (MDR), in the next section.

In addition to the challenge of modeling nonlinear

interactions, GWAS introduces important computational
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challenges. The detection of epistasis in the absence of

significant main effects requires combinations of SNPs to

be systematically evaluated. As summarized by Moore

and Ritchie56 and Moore,57 combinatorial assessment of

SNPs in a GWAS is not computationally feasible beyond

exploring two-way and three-way combinations. As we

will briefly describe in the next section, addressing this

problem will require using prior statistical and biological

knowledge, because there are not enough computers in

the world for a brute-force approach.

Finally, perhaps the most important challenge we face in

detecting and characterizing epistasis is interpretation. As

discussed above, going from a population-level statistical

summary of gene-gene interactions to inferences about

the biological interactions occurring at the cellular level

is a significant and difficult leap. Conversely, translating

our knowledge of gene networks and cellular function at

the individual level to predictions about public health is

equally difficult. As discussed by Moore and Williams,

systems biology holds the promise to help us traverse

this conceptual and practical divide.29

A Multifactor Dimensionality Reduction Approach

to Modeling Statistical Epistasis

Thornton-Wells et al. have suggested that we need an

analytical retooling to address the etiological complexity

of common human disease.48 As such, several novel

approaches have been developed that are designed specif-

ically to tackle complex problems such as modeling epis-

tasis. As reviewed recently by Cordell,28 multifactor dimen-

sionality reduction (MDR) has emerged as one important

new method for detecting and characterizing patterns of

statistical epistasis in genetic association studies that

complements the linear modeling paradigm. MDR was

developed as a nonparametric (i.e., no parameters are esti-

mated) and genetic model-free (i.e., no genetic model is

assumed) data mining and machine learning strategy for

identifying combinations of discrete genetic and environ-

mental factors that are predictive of a discrete clinical

endpoint.57–63 Unlike most other methods, MDR was

designed to detect interactions in the absence of detectable

main effects and thus complements statistical approaches,

such as logistic regression, and machine learning methods,

such as random forests and neural networks. At the heart

of the MDR approach is a feature or attribute construction

algorithm that creates a new variable or attribute by pool-

ing genotypes from multiple SNPs. The general process of

defining a new attribute as a function of two or more other

attributes is referred to as constructive induction, or attri-

bute construction, and was first described by Michalski.64

Constructive induction, using the MDR kernel, is accom-

plished in the following manner. Given a threshold T,

a multilocus genotype combination is considered high

risk if the ratio of cases (subjects with disease) to controls

(healthy subjects) exceeds T; otherwise, it is considered

low risk. Genotype combinations considered to be high

risk are labeled G1, whereas those considered low risk are
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labeled G0. This process constructs a new one-dimensional

attribute with values of G0 and G1. It is this new single

variable that is assessed, via any classification method.

The MDR method is based on the idea that changing the

representation space of the data will make it easier for

methods such as logistic regression, classification trees, or

a naive Bayes classifier to detect attribute dependencies.

As such, MDR significantly complements other classifica-

tion methods such as those reviewed by Hastie et al.46

This method has been confirmed in numerous simulation

studies, and a user-friendly open-source MDR software

package written in Java is freely available.

Since its initial description by Ritchie et al.,58 many

modifications and extensions to MDR have been proposed.

These include, for example, entropy-based interpretation

methods,63 the use of odds ratios,65 log-linear methods,66

generalized linear models,67 methods for imbalanced

data,68 permutation testing methods,69 methods for

missing data,70 and different evaluation metrics.71–73 The

MDR approach has also been successfully applied to

a wide range of different genetic association studies. For

example, Andrew et al.74 used MDR to model the relation-

ship between polymorphisms in DNA repair enzyme genes

and susceptibility to bladder cancer (MIM 109800). A

highly significant nonadditive interaction was found

between two SNPs in the xeroderma pigmentosum group

D (XPD) gene (MIM 278730) that was a better predictor

of bladder cancer than smoking. These results were later

replicated in independent studies from a consortium.75

As discussed above, the biggest challenge to implement-

ing methods such as MDR in GWAS is the combinatorial

explosion of SNP interactions. The focus of many current

MDR studies is on scaling this approach to GWAS data.

Other than faster computer hardware for MDR76 or parallel

implementations,77 there are two general strategies that

are being pursued,57,78 each of which has advantages and

disadvantages.79 The first is a filter approach that preselects

SNPs that are likely to interact prior to MDR analysis63,80.

Machine learning methods based on the ReliefF algo-

rithm81 look promising as statistical filter approaches for

GWAS.82–84 The second approach is the use of stochastic

search algorithms, such as those reviewed by Michalewicz

and Fogel,85 to guide an MDR analysis. Methods based

on evolutionary computing algorithms that perform

parallel stochastic searches across MDR models have been

extensively explored.57,78,86–91 The key to the success of

these algorithms is the availability of either statistical

or biological knowledge that can be used to prioritize

certain SNPs in the search process.78,91 Otherwise, the

algorithm is searching for a genetic needle in an effectively

infinite genomic haystack. For example, Moore and

White86,87 showed how preprocessed ReliefF scores can

be used to provide good building blocks for an evolu-

tionary computing algorithm, and Pattin et al.92 reviewed

a role for protein-protein interaction databases as a source

of biological knowledge that could be used in the same

manner.
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Implications of Epistasis for Personal Genetics

The current personal genetics paradigm that is being

marketed directly to the consumer is built on the results

of genetic association studies that ignore the complexity

of the genotype-to-phenotype mapping relationship that

results from epistasis and other phenomena. Indeed, it is

now apparent that single SNPs typically have very small

effects on risk and are not useful for predicting risk.11,12

This presents a significant problem for those hoping to

capitalize on SNPs or other genetic variations as useful

markers of health and disease. We propose here that the

full utility of personal genetics will not be realized until

the full complexity of genetic architecture is embraced

rather than ignored. For this to become a reality, those con-

ducting genetic association studies will need to rigorously

test hypotheses about epistasis, gene-environment interac-

tion, locus heterogeneity, etc. via analytical methods that

are powered to detect these phenomena. These results

need to be reported for every study, in addition to the stan-

dard analyses reporting independent SNP effects. This will

of course not be easy for some of the reasons outlined

above, but it is absolutely necessary if we expect to bring

genetics to the consumer in a meaningful manner.

To illustrate this point, all one needs to do is consider

a well-characterized family history, which remains the

most powerful predictor we have about risk for common

diseases. As Kardia et al. discuss, a carefully recorded family

history of coronary heart disease (CHD) is a powerful indi-

cator of future risk even after adjustment for the effects of

traditional risk factors such as age, smoking, and body

mass index.93 Family history captures large amounts of

genomic and environmental sharing among relatives,

and it implicitly incorporates nonlinear aspects. Therefore,

family history provides genome-wide and not gene-

specific risk, thereby enabling a better model of risk. Given

these facts, genetic data analyses using a linear model will

never approach the simplicity and cost effectiveness of

using family history to identify individuals at risk for

CHD. This is particularly true if we assume that epistasis

and gene-environment interactions play an important

role in disease susceptibility, as is expected for CHD94

and its risk factors.95

Consider type 2 diabetes, or T2D (MIM 125853), as an

example. As with CHD, family history of T2D is a strong

predictor of risk. However, as noted by Williams et al., the

results of GWAS analysis of T2D have been mixed, and it

does not appear that the known genetic risk factors yet

approach the predictive power of family history.96 To illus-

trate this point, the authors present in Figure 2 their

consumer genetic testing results for T2D from one of the

available services, 23andMe. Note that none of the poly-

morphisms reported have genotypes with maximum

relative risk levels above 2. In fact, as noted earlier, most

have a maximum relative risk level of less than 1.5. Overall,

this combination results in very small increases or decreases

in risk, as is seen for the results for each author. The progres-

sion from single SNPs as risk factors to combinations of
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SNPs acting epistatically to the entire genome as a risk factor

was recently discussed by Moore, who proposed that our

individual ‘‘genometype’’ may ultimately prove the most

useful strategy for personal genetics.97 This is consistent

for the power of family history and, if true, suggests that

we need to fundamentally change our approach to genetic

association analysis if the results are to be useful for personal

genetics and other endeavors in human genetics.

Recommendations for Personal Genetics

We have presented here an introduction to epistasis,

a theory for why epistasis is so common in human biology,

a summary of the challenges in detecting and character-

izing epistasis in genetic association studies, a summary

of the MDR method for modeling epistasis, and a summary

of the implications of epistasis for personal genetics.

Below, we present five recommendations for what we can

do to improve the usefulness of genetic association results

for the providers and the consumers of personal genetics.

We believe this should be a research priority given the

central motivation in human genetics to deliver new

knowledge that improves human health. Personal genetics

may play an important role in the delivery of healthcare

benefits by initially fostering a patient-physician dialog

about results and perhaps even later by providing person-

alized genetics that will tailor treatment and prevention

strategies to individual patients.

First, we need to greatly improve our knowledge of bio-

logical and statistical epistasis and its role in human health

and disease. We know very little about the role of epistasis

in human biology and public health because the focus for

so long has been on the effects of single genes and single

genetic variants in biological and clinical endpoints. Given

Figure 2. Panel of Genetic Markers for Type 2 Diabetes
Provided by 23andMe for Each of the Authors
The profile of author A (gray bars) is associated with an overall
slight decrease in risk under a multiplicative model, whereas the
profile of author B (black bars) is associated with a slightly
increased risk. Note that all adjusted odds ratios for individual
genotypes are between 0.8 and 1.2.
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the ubiquity of complexity in genetic architecture, with

epistasis as a central component, we need to rephrase our

research questions with this in mind. Instead of asking

which SNP is associated with disease, we should be asking

which combination of SNPs is associated with disease.

Rephrasing the question in this manner necessitates

a redefinition of the null hypotheses that needs to be

tested via statistical and computational methods. The

current status quo is to test the universal null hypothesis

of no association via only linear statistical methods.

Rejection of this null hypothesis allows an investigator to

draw inferences about independent genetic effects but

not nonlinear epistatic effects. Given that complexity,

including epistasis, is likely a substantial component of

biological reality, we propose the following set of plausible

hypotheses for retooling our analytical approach to this

problem. First, we recommend as a starting point to test

the null hypothesis that the associations in the data are

only linear and additive. A null hypothesis of linearity is

consistent with the hypothesis testing in the status quo.

For example, one could test the linear null hypothesis via

methods such as MDR that were designed to model

nonlinear interactions. Once the linear null hypothesis

has been tested via proper nonlinear methods, the logical

next step is to test the universal null hypothesis of no

association via linear statistical methods that model the

independent and additive effects. Rejection of the uni-

versal null, in addition to the linear null, provides a set

of results generated in a systematic manner that embraces

complexity. These results can then be interpreted biologi-

cally via experimental methods or can be interpreted statis-

tically via approaches such as parsimony or information

theory. At present, this proposal is more of a philosophical

exercise than a practical one because fast and powerful

analytical tools and software for detecting epistasis on

a genome-wide scale are not yet available. Additionally, it

is important to design these analyses to compensate for

multiple testing issues that exist as part of evaluating

interactions. Despite some of these current practical limita-

tions, the biological evidence for epistasis is compelling

enough to suggest that there are very few loci in the

genome that will have universal effects on disease risk on

the order of that seen, for example, for the apolipoprotein

E (APOE) gene (MIM 107741) and Alzheimer’s disease

(MIM 104300). As such, we need to design our analyses

accordingly. Genetic epidemiology has shaken the trees

and picked the low-hanging fruit. It is time to climb the

branches to identify the hard-to-reach fruit and to search

for low-hanging fruit from a different perspective (see

Figure 3).

With the above in mind, it is important to note that the

current one-SNP-at-a-time approach to GWAS analysis that

puts so much weight on replication98 can actually provide

important clues about the complexity of the underlying

genetic architecture. For example, a recent study by Greene

et al. demonstrated that failure to replicate a genetic asso-

ciation in a second independent sample can be an indica-
The American
tion that single SNPs contribute to disease susceptibility

through nonlinear interactions with one or more other

SNPs.99 Greene et al. showed that the power to replicate

a SNP with a significant main effect can drop from more

than 80% to less than 20% with a change in allele

frequency at a second interacting SNP of less than 0.1.99

Such small changes in allele frequency are often observed

even when the replication sample is taken from the same

population. This study recommended that SNPs that fail

to replicate be followed up with epistasis analysis to check

for interaction. This of course introduces epistasis analysis

as an afterthought to a main-effects analysis, an approach

that we now argue is inadequate. This study also raises the

question of how much weight we should put on statistical

replication under the assumption of complexity.

The believability of a statistical result relies more on the

biological interpretation and experimental evidence than

it does on the actual statistical finding.99 Indeed, Bush

et al.,100 Holmans et al.,101 and Saccone et al.102 have shown

that using biological knowledge to guide genetic associa-

tion studies may provide more meaningful results. Yu

et al. provide a hypothesis-testing framework for

combining multiple SNPs from the same gene or from

multiple genes in a pathway-based manner.103 Askland

et al. recently showed that patterns of SNPs in biological

pathways are more likely to replicate than individual SNPs

in GWAS.104 Wilke et al. have suggested that we should

Linear Effects

The Low-Hanging Fruit

Nonlinear Effects

The High-Hanging Fruit

Figure 3. Low-Hanging and High-Hanging Genetic Fruit
Under the assumption that common diseases have a complex
genetic architecture, we expect there to be few SNPs with
moderate to large independent and additive main effects on
disease susceptibility (i.e., low-hanging fruit). Rather, most SNPs
of interest will be nestled in the branches and will only be found
by embracing the complexity of the genotype-to-phenotype
mapping relationship that is likely to be characterized by
nonlinear gene-gene interactions and other phenomena such as
gene-environment interaction and locus heterogeneity.
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not even begin to analyze a GWAS study until we have

exhaustively studied each candidate gene and each

pathway; only then will we have the appropriate knowl-

edge base to make sense of GWAS results.105 As Moore

noted, there is a major shift in the field of genetic epidemi-

ology away from the purely statistical approaches to more

bioinformatic approaches that consider knowledge about

gene function, gene networks, and biochemical path-

ways.97 2009 perhaps marks the turning point toward

more of a systems approach that recognizes the role of

epistasis and other complexities in genetic architecture.

Second, we need powerful analytical tools that are

designed to address the complexity of genetic architecture

resulting from epistasis and other phenomena. There is

an important role for biostatisticians, bioinformaticists,

and other analytically trained scientists in developing the

next generation of statistical and computational tools

that will embrace and directly confront the complexity

that confounds current genetic association studies. The

MDR algorithm that we briefly summarized here is a start,

but it is only one example of the types of tools needed.

Such tools are likely to come from the machine learning

and data mining communities that are actively engaged

in solving complex problems in other disciplines such as

economics and engineering. In addition to powerful algo-

rithms, we also need user-friendly software that can be

used by geneticists and epidemiologists. As reviewed by

Moore, these software packages need to be designed so

that they are easy enough for a biologist to use but power-

ful and flexible enough for a statistician or computer scien-

tist to use.106 Moore suggests that the ideal analysis will be

performed by the geneticist and the bioinformaticist

jointly so that they can communicate information about

the problem and the algorithms in real time.106

Third, we need better experimental methods for confirm-

ing statistical models of epistasis in animal models or in

human cell culture. Interpreting genetic associations for

common diseases such as type 1107,108 and type 2109,110

diabetes has not been easy, and it is clear that making

inferences about etiology from any genetic model is a

significant ongoing challenge.111 Ultimately, we will need

to rely on experimental biology to validate our genetic

models. Although we are very good at perturbing single

genes or pairs of genes, we are not very good at designing

experiments to perturb complex systems. A call for

multifactorial perturbation experiments has been made,

but there has been little progress toward this end.112 A

step in the right direction is the Collaborative Cross initia-

tive from the Complex Trait Consortium, which aims to

develop a common reference panel of recombinant inbred

mice that each have a mixture of genomes from several

laboratory strains of mice and several wild strains.113,114

This resource will provide a panel of mice for experimenta-

tion that more closely resembles the natural distribution of

genetic diversity in humans than the widely used inbred

laboratory strains do. Similar resources in other model

systems such as Drosophila are also being developed.115
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Our ability to make full use of these panels and other

resources to study epistasis will depend critically on our

ability to perturb multiple genes simultaneously in these

systems in a high-throughput manner.

Fourth, we need to remember the principles of classical

genetics as we immerse ourselves in the excitement of

cutting-edge genotyping technology that makes GWAS

possible as well as in the emerging methods to rapidly

sequence the entire genome. Indeed, Miller and Hol-

lander116 cautioned geneticists 15 years ago to not divert

our attention elsewhere in light of ‘‘wondrous new molec-

ular techniques.’’ This warning has been largely ignored.

For example, pedigrees have been put aside in favor of large

population-based case-control studies for GWAS. We

predict there will be a return to pedigree-based studies

and other methods consistent with classical genetics as it

is realized that technology-centric approaches have signif-

icant shortcomings. The idea that pedigrees are still useful

is supported by Culverhouse et al., who showed that purely

epistatic models can give rise to increased allele sharing

between affected siblings even in the absence of variation

resulting from additivity or dominance.31 Of course, as

mentioned above, we still need to develop the analytical

tools to model epistasis in pedigree-based studies. The inte-

gration of the pedigree disequilibrium test (PDT) of Martin

et al.117,118 with the MDR method described above has

yielded a novel MDR-PDT approach to detecting interac-

tions in general pedigrees.119 This is of course only a start,

but it is a step in the right direction. The only way to

ensure that classical genetics is not forgotten in the geno-

mics age is to make an effort to teach the classical concepts

from the original literature in graduate school. This is often

passed over in favor of recent literature on GWAS and other

genomics methodologies. It is the blend of classical

genetics with modern genetics that gives us the maximum

ability to reveal the details of genetic architecture that are

necessary for personal genetics.

Finally, we need to continue to integrate systems biology

into human genetics in a meaningful manner. As Moore

and Williams have discussed, one of the greatest contribu-

tions to our understanding of biological organisms was the

merger of Darwin’s evolution of species by natural selec-

tion and Mendel’s principles of heredity.29 This merger

was referred to as ‘‘the modern synthesis’’ by Huxley120

and others, and it paved the way for evolutionary and

population genetics as we know them today. We are pres-

ently undergoing a ‘‘more modern’’ synthesis that merges

multiple disciplines into what has been referred to as

systems biology.121 One goal of systems biology is to effi-

ciently, accurately, and inexpensively measure most if

not all of the biomolecules involved in one or more

biochemical or physiological systems. Only after all of

the relevant information is available will it be possible to

mathematically model biomolecules with respect to inter-

individual phenotypic differences. We argue that the vast

divide between biological and statistical epistasis will

only be narrowed by our success in applying systems
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biology to genetics problems.122 Our ability to measure

information at multiple levels in the hierarchy between

genes and disease will provide the basis for interpreting

statistical models. Of course, more data is not the same as

more knowledge, and our ability to translate systems

biology into a deeper understanding of epistasis and

human disease will depend critically on our analytical

framework and the simplifying assumptions that we make.

Recognition of the complexity of genetic architecture

and successful progress in terms of these five recommenda-

tions will provide the knowledge base that will be neces-

sary for personal genetics to have the kind of impact on

human health that we would all like to see. It is interesting

to note that the focus on complexity in human genetics

is not a new idea. More than 50 years ago, Snyder123 sug-

gested that ‘‘if human genetics is to progress along fresh

pathways, the traditional atomistic approach must be

supplemented by new methods which will provide infor-

mation on multifactorial inheritance’’ and that ‘‘We must

be able to analyze genetic variability without recourse to

classical single-gene analyses.’’ It is time for the human

genetics community to embrace the complexity of human

traits that was recognized by Snyder and others before

many current human geneticists were born.
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